Recent and Preprints

Lecture notes, book chapters, surveys

Complete list


  1. Shi Jin, Hanqing Lu, Lorenzo Pareschi, A High Order Stochastic Asymptotic Preserving Scheme for Chemotaxis Kinetic Models with Random Inputs, Multiscale Model. Simul.  16  (2018),  no. 4, 1884-1915.
  2. Bertram Düring, Lorenzo Pareschi, Giuseppe Toscani, Kinetic models for optimal control of wealth inequalities,  Eur. Phys. J. B (2018) 91: 265. [open access].
  3. Giacomo Albi, Michael Herty, Lorenzo Pareschi, Relaxation approximation of optimal control problems and applications to traffic flow models, AIP Conference Proceedings 1975, 020001 (2018) 
  4. Dimarco, G.; Pareschi, L.; Samaey, G.; Asymptotic-Preserving Monte Carlo Methods for Transport Equations in the Diffusive Limit. SIAM J. Sci. Comput. 40 (2018), no. 1, A504–A528.
  5. Shi Jin, Hanqing Lu, Lorenzo Pareschi, Efficient Stochastic Asymptotic-Preserving IMEX Methods for Transport Equations with Diffusive Scalings and Random Inputs, SIAM J. Sci. Comput. 40 (2018), no. 2, A671–A696. 
  6. Lorenzo Pareschi, Mattia Zanella, Structure preserving schemes for nonlinear Fokker-Planck equations and applications, J. Sci. Comput. 74 (2018), no. 3, 1575–1600.
  7. Sebastiano Boscarino, Lorenzo Pareschi, Giovanni Russo, A unified IMEX Runge-Kutta approach for hyperbolic systems with   multiscale relaxation, SIAM J. Numer. Anal. 55 (2017), no. 4, 2085–2109.
  8. Giacomo Albi, Lorenzo Pareschi, Mattia Zanella, Opinion dynamics over complex networks: kinetic modeling and numerical methods, Kinetic and Related Models, 11, 2017, pp. 1-32.
  9. Giacomo Dimarco, Lorenzo Pareschi, Implicit-explicit linear multistep methods for kinetic equations, SIAM J. Numer. Anal. 55 (2017), no. 2, 664–690.
  10. Lorenzo Pareschi, Thomas Rey, Residual equilibrium schemes for time dependent PDEs,  Computer and Fluids, vol. 156, 329-342 (2017). 
  11. Giacomo Albi, Lorenzo Pareschi, Selective model predictive control for flocking systems, Commun. Appl. Ind. Math.  9  (2018),  no. 2, 4-21. 
  12. Sebastiano Boscarino, Lorenzo Pareschi, On the asymptotic properties of IMEX Runge-Kutta schemes for hyperbolic balance laws, Journal of Computational and Applied Mathematics, 316, 2017, pp. 60–73.
  13. Lorenzo Pareschi, Pierluigi Vellucci, Mattia Zanella, Kinetic models of collective decision-making in the presence of equality bias, Physica A, 467,  2017, pp. 201-217
  14. Giacomo Albi, Lorenzo Pareschi, Mattia Zanella, On the optimal control of opinion dynamics on evolving networks, In: System Modeling and Optimization. CSMO 2015. IFIP Advances in Information and Communication Technology, vol 494. Springer, Cham, (2016).
  15. Russ Caflisch, Giacomo Dimarco, Lorenzo Pareschi, An hybrid method for the Boltzmann equation, AIP Conf. Proc. 1786, RGD 30, (2016)
  16. Herty, Michael;  Pareschi, Lorenzo;  Steffensen, Sonja. Mean-field control and Riccati equations. Netw. Heterog. Media  10  (2015),  no. 3, 699--715.
  17. Albi, Giacomo;  Pareschi, Lorenzo;  Zanella, Mattia. Uncertainty quantification in control problems for flocking models. Math. Probl. Eng.  2015, Art. ID 850124, 14 pp.
  18. Albi, Giacomo;  Herty, Michael;  Pareschi, Lorenzo. Kinetic description of optimal control problems and applications to opinion consensus. Commun. Math. Sci.  13  (2015),  no. 6, 1407--1429.
  19. Filbet, Francis;  Pareschi, Lorenzo;  Rey, Thomas. On steady-state preserving spectral methods for homogeneous Boltzmann equations. C. R. Math. Acad. Sci. Paris  353  (2015),  no. 4, 309--314.
  20. Hu, Jingwei;  Li, Qin;  Pareschi, Lorenzo. Asymptotic-preserving exponential methods for the quantum Boltzmann equation with high-order accuracy. J. Sci. Comput.  62  (2015),  no. 2, 555--574.

  21. Degond P., Dimarco G., Pareschi L.. The Moment Guided Monte Carlo MethodInternational Journal For Numerical Methods In Fluids, 67, 2, pp 189–213(2011). 
  22. Dimarco G., Pareschi L., Exponential methods for kinetic equationsSIAM J. Num. Anal, 49, 2057-2077, (2011). 
  23. Boccabella, A., Natalini R., Pareschi L., On a continuous mixed strategy model for evolutionary game-theoryKinetic and Related Models, 4, 187-213,  (2011)
  24. L.Pareschi, G.Russo, Efficient asymptotic preserving deterministic methods for the Boltzmann equation, AVT-194 RTO AVT/VKI, Models and Computational Methods for Rarefied Flows, Lecture Series held at the von Karman Institute, Rhode St. Genèse, Belgium, 24 -28 January (2011). 
  25. Maldarella, D., Pareschi, L. Kinetic models for socio-economic dynamics of speculative marketsPhysica A, 391, 715-730, (2012)  
  26. Kashdan L., Pareschi L., Mean field mutation dynamics and the continuous Luria-Delbruck distributionMathematical Biosciences, 240, 223-230 (2012).
  27. Herty M., Pareschi L., Steffensen S., Numerical methods for the optimal control of scalar conservation laws, Lecture Notes in Computer Science, IFIP TC7 Conference on System Modelling and Optimization, (2012)
  28. Dimarco G., Pareschi L., High order asymptotic-preserving schemes for the Boltzmann equationComptes Rendus Mathematique, 350, 481-486, (2012)
  29. Albi G., Pareschi L., Modelling self-organized systems interacting with few individuals: from microscopic to macroscopic dynamicsApplied Math. Letters 26, (2013), 397-401.
  30. Li Q., Pareschi L.,  Exponential Runge-Kutta schemes for inhomogeneous Boltzmann equations with high order of accuracy, preprint arXiv:1208.2622
  31. Dimarco G., Pareschi L., Asymptotic preserving Implicit-Explicit Runge-Kutta methods for nonlinear kinetic equationsSIAM J. Numer. Anal. 51, (2013), 1064-1087.
  32. Albi G., Pareschi L., Binary interaction algorithms for the simulation of flocking and swarming dynamicsMultiscale Modeling and Simulation 11, (2013), 1-29.  (arXiv:1203.0721)
  33. Herty M., Pareschi L., Steffensen S., Implicit-Explicit Runge-Kutta schemes for numerical discretization of optimal control problemsSIAM J. Numer. Anal. 51, (2013), 1875-1899. (arXiv: 1202.1166)
  34. Mouhot C., Pareschi L., Rey T., Convolutive decomposition and fast summation methods for discrete-velocity approximations of the Boltzmann equationMath. Mod. Num. Anal. 47, 2013, 1515-1531. (arXiv: 1201.3986)
  35. Boscarino S., Pareschi L., Russo G., Implicit-Explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limitSIAM J. Sci. Comp. 35, (2013), 22-51. ( arXiv:1110.4375).
  36. L. Pareschi, Kinetic equations: computation, invited contribution to Springer "Encyclopedia of Applied and Computational Mathematics", ed. by B. Engquist, 2013.
  37. Pareschi, L.;  Toscani, G.  Wealth distribution and collective knowledge: a Boltzmann approach. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.  372  (2014),  no. 2028, 20130396, 15 pp.
  38. Albi, G.;  Pareschi, L.;  Zanella, M.  Boltzmann-type control of opinion consensus through leaders. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.  372  (2014),  no. 2028, 20140138, 18 pp.
  39. Albi, Giacomo;  Herty, Michael;  Jörres, Christian;  Pareschi, Lorenzo. Asymptotic preserving time-discretization of optimal control problems for the Goldstein-Taylor model. Numer. Methods Partial Differential Equations  30  (2014),  no. 6, 1770--1784.
  40. Dimarco, G. ;  Pareschi, L.  Numerical methods for kinetic equations. Acta Numer.  23  (2014), 369--520.
  41. Dimarco, Giacomo;  Pareschi, Lorenzo;  Rispoli, Vittorio. Implicit-explicit Runge-Kutta schemes for the Boltzmann-Poisson system for semiconductors. Commun. Comput. Phys.  15  (2014),  no. 5, 1291--1319.
  42. Li, Qin;  Pareschi, Lorenzo. Exponential Runge-Kutta for the inhomogeneous Boltzmann equations with high order of accuracy. J. Comput. Phys.  259  (2014), 402--420.

  43. R.Caflisch, H.Chen, E.Luo, L.Pareschi, A Hybrid Method that Interpolates Between DSMC and CFD, 44TH AIAA Aerospace Sciences Meeting and Exhibit, Reno, AIAA-2006-987, (2006).
  44. E.Ferrari, L.Pareschi, Hybrid Monte Carlo schemes for the diffusion of impurities in a gas, Modelling and Numerics of Kinetic Dissipative Systems, Nova-Science, New York (2006). 
  45. L.Pareschi, G.Toscani, Overpopulated tails in non conservative kinetic models, Modelling and Numerics of Kinetic Dissipative Systems, Nova-Science, New York (2006). 
  46. C.Mouhot, L.Pareschi, Fast algorithms for computing the Boltzmann collision operator,Math. Comp. 75 (2006) 1833-1852. 
  47. S.Brull, L.Pareschi, Dissipative hydrodynamic models for the diffusion of impurities in a gas, Appl. Math. Lett. 19 (2006), no. 6, 516--521. 
  48. F.Filbet, C.Mouhot, L.Pareschi, Solving the Boltzmann equation in NlogN, SIAM J. Sci. Comput. 28, 1029 (2006) 
  49. L.Pareschi, G.Toscani, Self-similarity and power-like tails in nonconservative kinetic models, J.Stat. Phys., 124, (2006), pp.747-779. 
  50. G.Dimarco, L.Pareschi, Hybrid methods for multiscale problems I: hyperbolic relaxation system, Commun. Math. Sci. 4 (2006), no. 1, 155--177. 
  51. M.Herty, L.Pareschi, M.Seaid, Discrete velocity models and relaxation schemes for traffic flows, SIAM J. Sci. Comput. 28, 1582 (2006)
  52. Dimarco, Giacomo ; Pareschi, Lorenzo . Hybrid multiscale methods. II. Kinetic equations. Multiscale Model. Simul. 6 (2007/08), no. 4, 1169--1197. 
  53. Herty, Michael ; Pareschi, Lorenzo ; Seaïd, Mohammed . Enskog-like discrete velocity models for vehicular traffic flow. Netw. Heterog. Media 2 (2007), no. 3, 481--496 (electronic). 
  54. Giacomo Dimarco, Piero Foscari, Pareschi L. A Remark On The Finite Number Of Particles Effect In Monte Carlo Methods For Kinetic Equations. Pamm, Vol. 7; (2007) P. 1041003-1041004.
  55. Ferrari, E. ; Pareschi, L. Modelling and numerical methods for the dynamics of impurities in a gas. Internat. J. Numer. Methods Fluids 57 (2008), no. 6, 693--713.
  56. Banda, Mapundi ; Klar, Axel ; Pareschi, Lorenzo ; Seaïd, Mohammed . Lattice-Boltzmann type relaxation systems and high order relaxation schemes for the incompressible Navier-Stokes equations. Math. Comp. 77 (2008), no. 262, 943--965.
  57. Trazzi, Stefano ; Pareschi, Lorenzo ; Wennberg, Bernt . Adaptive and recursive time relaxed Monte Carlo methods for rarefied gas dynamics. SIAM J. Sci. Comput. 31 (2008/09), no. 2, 1379--1398. 
  58. Cordier, Stephane ; Pareschi, Lorenzo ; Piatecki, Cyrille . Mesoscopic modelling of financial markets. J. Stat. Phys. 134 (2009), no. 1, 161--184.
  59. Boscarino S., Pareschi L, Russo G., IMEX Runge-Kutta schemes and hyperbolic systems of conservation laws with stiff diffusive relaxation, ICNAAM, AIP Conference Proceedings 1168, (2009) pp.1106-1111. 
  60. Herty, Michael; Pareschi, Lorenzo. Fokker-Planck asymptotics for traffic flow modelsKinet. Relat. Models 3 (2010), no. 1, 165--179. 
  61. Caflisch R., Dimarco G., Pareschi L., Direct simulation Monte Carlo schemes for Coulomb interactions in plasmas,  Comm. App. Ind. Math., 1, (2010), pp. 72-91. 
  62. Dimarco G., Pareschi L. Fluid Solver Independent Hybrid Methods For Multiscale Kinetic Equations.  Siam Journal On Scientific Computing, Vol. 32; P. 603-634, (2010). 
  63. C.Piatecki, S.Cordier, D.Maldarella, L.Pareschi, Microscopic and kinetic models for financial marketsMathematical modelling of collective behavior in socio-economic and life sciences, p. 49-80, Boston: Birkhauser, (2010).
  64. Maldarella, D., Pareschi, L. Price dynamics in financial markets: a kinetic approachScience and Culture, 76, p.448-453, (2010)

  65. S.Jin, L.Pareschi, Asymptotic preserving (AP) schemes for multiscale kinetic equations: a unified approach, Proceedings Hyperbolic problems: Theory, Numerics, Applications, Magdeburg, International Series of Numerical Mathematics, Birkhauser, 141, (2001), 573-582.. 

  66. L.Pareschi, G.Russo, Time Relaxed Monte Carlo methods for the Boltzmann equation, SIAM J. Sci. Comput. 23 (2001), no 4, 1253--1273 
  67. L.Pareschi, Central differencing based numerical schemes for hyperbolic conservation laws with relaxation terms, SIAM J. Numer. Anal. 39 (2001), no. 4, 1395--1417 
  68. L.Pareschi, G.Russo, An introduction to Monte Carlo methods for the Boltzmann equation. ESAIM: Proceedings, Vol.10, pp.35-75 (2001) 
  69. L.Pareschi, B.Wennberg, A recursive Monte Carlo algorithm for the Boltzmann equation in the Maxwellian case, Monte Carlo Methods and Applications, Vol. 7, no. 3-4, pp.~349-357, (2001). 
  70. G.Naldi, L.Pareschi, G.Toscani, Convergence of kinetic approximation to nonlinear diffusion problems, Proceedings Conference on Godunov Methods (Oxford, 1999), Kluwer Academic-Plenum Publishers, New York (2001), pp.655-662.
  71. O.Ascenzi, L.Pareschi, F.Segala, A precise computation of stress intensity factor on the front of a convex planar crack, International Journal Numerical Methods in Engineering, 54 (2002), pp.241-261. 
  72. F.Filbet, L.Pareschi, Numerical solution of the non homogeneous Fokker-Planck-Landau equation. Progress in Industrial Mathematics at ECMI 2000, A.M.Anile, V.Capasso, A.Greco editors, Springer (2002), 325-331. 
  73. F.Filbet, L.Pareschi, A numerical method for the accurate solution of the Fokker-Planck-Landau equation in the non homogeneous case, Journal of Computational Physics, 179, 1-26 (2002). 
  74. S.Jin, L.Pareschi, M.Slemrod, A relaxation scheme for solving the Boltzmann equation based on the Chapman-Enskog expansion, Acta Mathematicae Applicatae Sinica, Vol. 18, (2002), no.1, 1-26. 
  75. G.Naldi, L.Pareschi, G.Toscani, Relaxation schemes for PDEs and applications to degenerate diffusion problems, Surveys on Mathematics for Industry (now European Journal for Applied Mathematics), 10, pp.315-343, (2002).
  76. L.Pareschi, G.Toscani, C.Villani, Spectral methods for the non cut-off Boltzmann equation and numerical grazing collision limit, Numerische Mathematik, 93, pp.527-548, (2003). 
  77. G.Naldi, L.Pareschi, G.Toscani, Spectral methods for one-dimensional kinetic models of granular flows and numerical quasi elastic limit, Mathematical Models and Numerical Analysis, 37, (2003), pp. 73-90. 
  78. R.E.Caflisch, L.Pareschi, Towards and hybrid Monte Carlo method for rarefied gasdynamics, Ben Abdallah, Naoufel (ed.) et al., Transport in transition regimes. New York, NY: Springer. IMA Vol. Math. Appl. 135, pp.57-73 (2004).
  79. L.Pareschi, On the fast evaluation of kinetic equations for driven granular mediaNumerical Analysis and Advanced Applications - Proceedings of ENUMATH 2001, the 4th conference on numerical mathematics and advanced applications, Ischia, July 2001, Springer-Italia, (2003).
  80. L.Pareschi, G.Russo, High order asymptotically strong-stability preserving methods for hyperbolic systems with stiff relaxation, Hyperbolic Problems: Theory, Numerics, Applications : Proceedings of the Ninth International Conference on Hyperbolic Problems Held in Caltech, Pasadena, March 25-29, 2002, Springer, (2003), pp.241-255. 
  81. L.Pareschi, Computational methods and fast algorithms for Boltzmann equations, Chapter 7, Lecture Notes on the discretization of the Boltzmann equation, Series on Advances in Mathematics for Applied Sciences, Vol. 63, World Scientific, (2003). 
  82. F.Filbet, L.Pareschi, Numerical solution of the Fokker-Planck-Landau equation by spectral methods. Commun. Math. Sci. 1 (2003), no. 1, 206--207. 
  83. J.A.Carrillo, J.M.Mantas, J.Ortega, L.Pareschi, Parallel Integration of Hydrodinamical Approximations for the Boltzmann Equation on a Cluster of Computers, Journal of Computational Methods in Science and Engineering, Vol. 3, No. 3; pp: 337-346 (2003). 
  84. A.Klar, L.Pareschi, M.Seaid, Uniformly accurate schemes for relaxation approximations to fluid dynamic equations, Applied Mathematics Letters, 16, (2003) pp.1123-1127. 
  85. M.K.Banda, A.Klar, L.Pareschi, M.Seaid, Compressible and Incompressible Limits for Hyperbolic Systems with Relaxation, Journal of Computational and Applied Mathematics, 168 (2004) pp.41-52. 
  86. L.Pareschi, G.Russo, G.Toscani, A kinetic approximation to Hele-Shaw flow, C. R., Math., Acad. Sci. Paris, Ser. I 338, No.2, pp.177-182 (2004). 
  87. L.Pareschi, G.Toscani, Modelling and numerical methods for granular gases, Chapter 9, Modeling and computational methods for kinetic equations, Series: Modeling and Simulation in Science, Engineering and Technology, Birkhauser (2004), pp.259-286. 
  88. P.Markowich, L.Pareschi, W.Bao, Quantum kinetic theory: modelling and numerics for Bose-Einstein condensation, Chapter 10, Modeling and computational methods for kinetic equations, Series: Modeling and Simulation in Science, Engineering and Technology, Birkhauser (2004), pp.287-320. 
  89. L.Pareschi, M.Seaid, A New Monte Carlo Approach for Conservation Laws and Relaxation Systems, Lecture Notes in Computer Science, Vol. 3037, pp:281-288 (2004) 
  90. C.Mouhot, L.Pareschi, Fast methods for the Boltzmann collision integral, C. R., Math., Acad. Sci. Paris, Ser. I 339 (2004) pp.71-76. 
  91. O.Ascenzi, L.Pareschi, F.Segala, Convergence of a quadrature formula for the approximation of stress intensity factor for planar cracks, Applied Mathematics and Computation, Volume 158, Issue 3, 15 (2004), pp 597-617.
  92. L.Pareschi, G.Puppo, G.Russo, Central Runge-Kutta schemes for hyperbolic conservation laws, SIAM J. Sci. Comp. 26, (2005) pp.979-999. 
  93. F.Filbet, L.Pareschi, G.Toscani, Accurate numerical methods for the collisional motion of (heated) granular flows, J. Comp. Phys., 202, (2005), pp.216-235. 
  94. P.Markowich, L.Pareschi, Fast, conservative and entropic numerical methods for the Bosonic Boltzmann equation, Numerische Math. 99 (2005), pp.509--532.
  95. L.Pareschi, G.Russo, S.Trazzi, A.Shevryn, Ye.Bondar, M.Ivanov, Comparison between TRMC and MFS methods for the space homogeneous Boltzmann equation Proceedings 24th International Symposium on Rarefied Gas Dynamics 2004, America Institute of Physics, 762, 571 (2005)
  96. L.Pareschi, G.Russo, S.Trazzi, A.Shevryn, Ye.Bondar, M.Ivanov, Plane Couette Flow Computations by TRMC and MFS Methods, Proceedings 24th International Symposium on Rarefied Gas Dynamics 2004, America Institute of Physics, 762, 577 (2005). 
  97. L.Pareschi, S.Trazzi, Numerical solution of the Boltzmann equation by Time Relaxed Monte Carlo (TRMC) methods, International Journal of Numerical Methods in Fluids, 48, (2005), pp. 947-983. 
  98. S.Cordier, L.Pareschi, G.Toscani, On a kinetic model for a simple market economy, Journal of Statistical Physics, 120, (2005), pp. 253-277. 
  99. A.Klar, M.Herty, L.Pareschi, General kinetic models for vehicular traffic and Monte Carlo methods,Computational Methods in Applied Mathematics, 5, (2005), pp. 154-169. 
  100. L.Pareschi, Hybrid multiscale methods for kinetic and hyperbolic problems, ESAIM: PROCEEDINGS, Vol.15, T. Goudon, E. Sonnendrucker and D. Talay, Editors, pp.87-120, (2005) 
  101. L.Pareschi, G.Russo,  Implicit-Explicit Runge-Kutta methods and applications to hyperbolic systems with relaxation, J. Sci. Comput. 25 (2005), no. 1-2, 129--155. 
  102. L.Pareschi, G.Russo,  An introduction to the numerical analysis of the Boltzmann equation, Lecture Notes at M&KT 2004, Riv. Mat. Univ. Parma (7) 4** (2005), 145--250

  103. L.Pareschi, Regularity results for the non cutoff Kac equation. Annali Università di Ferrara, Sez.VII -
    Sc. Mat.,Vol.XLII, (1996), pp.31-50. 
  104. E.Gabetta, L.Pareschi, Boundedness of moments and trend to equilibrium for the non cutoff Kac equation, Proceedings WASCOM 95, Rendiconti del Circolo Matematico di Palermo, Serie II, Suppl. 45, (1996), pp.285-298. 
  105. E.Gabetta, L.Pareschi, G.Toscani, Wild's sums and numerical approximation of nonlinear kinetic equations, Transport Theory and Statistical Physics, Vol.25, No.3-5, (1996), pp.515-531. 
  106. E.Gabetta, L.Pareschi, About the non cut-off Kac equation: Uniqueness and asymptotic behaviour, Communications on Applied Nonlinear Analisys, Vol.4 , No.1, (1997), pp.1-20.
  107. L.Pareschi, B.Perthame, A Fourier spectral method for homogeneous Boltzmann equations, Transport Theory and Statistical Physics, Vol.25, No.3-5, (1996), pp.369-383. 
  108. E.Gabetta, L.Pareschi, G.Toscani, Relaxation schemes for nonlinear kinetic equations, SIAM J. Numerical Analysis, Vol. 34, No. 6, pp. 2168-2194, (1997).
  109. L.Pareschi, Characteristic-based numerical schemes for hyperbolic systems with nonlinear relaxation, Proceedings 9th Int. Conf. on Waves and Stability in Continuous Media, Rendiconti Circolo Matematico di Palermo, Serie II, Suppl. 57, pp. 375-380, (1998). 
  110. S.Jin, L.Pareschi, G.Toscani, Diffusive relaxation schemes for multiscale discrete-velocity kinetic equations, SIAM J. Numerical Analysis, Vol. 35, No. 6, pp. 2405-2439, (1998). 
  111. G.Naldi, L.Pareschi, Numerical schemes for kinetic equations in diffusive regimes, Applied Math. Letters, Vol.11, No.2, pp. 29-35, (1998). 
  112. R.E.Caflisch, L.Pareschi, An implicit Monte Carlo method for rarefied gas dynamics I: The space homogeneous case, J. Computational Physics, 154, pp. 90-116, (1999). 
  113. G.Naldi, L.Pareschi, G.Toscani, Hyperbolic relaxation approximation to nonlinear parabolic problems, Proceedings 7th Int. Conf. on Hyperbolic Problems: Theory, Numerics, Application, ETH Zurich 1998, Internat. Series of Num. Math., Vol. 130, Birkhauser Verlag Basel, pp. 747-756, (1999).
  114. G.Naldi, L.Pareschi, Numerical schemes for hyperbolic systems of conservation laws with stiff diffusive relaxation, SIAM J. Numerical Analysis, Vol. 37, No. 4, pp. 1246-1270, (2000). 
  115. L.Pareschi, G.Russo, Numerical solution of the Boltzmann equation I: Spectrally accurate approximation of the collision operator, SIAM J. Numerical Analysis, Vol. 37, No. 4, pp. 1217-1245 (2000). 
  116. S.Jin, L. Pareschi, G. Toscani, Uniformly accurate diffusive relaxation schemes for multiscale transport equations, SIAM J. Numerical Analysis, Vol. 38, No. 13, pp. 913-936, (2000). 
  117. L.Pareschi, G.Russo, Asymptotic preserving Monte Carlo methods for the Boltzmann equation, Transp. Theo. Stat. Phys. 29, 3-5, pp.415-430, (2000). 
  118. E.Gabetta, L.Pareschi, M.Ronconi, Central schemes for hydrodynamical limits of discrete-velocity kinetic equations, Transp. Theo. Stat. Phys. 29, 3-5, pp.465-477, (2000). 
  119. L.Pareschi, G.Russo, On the stability of spectral methods for the homogeneous Boltzmann equation, Transp. Theo. Stat. Phys. 29, 3-5, pp.431-447, (2000) 
  120. L.Pareschi, G.Russo, Fast spectral methods for Boltzmann and Landau integral operators of gas and plasma kinetic theory, con G.Russo. Proceedings Analisi Numerica metodi e software matematico, Annali Università di Ferrara, Sez.VII - Sc. Mat., Vol.XLV, (2000), 329-341. 
  121. L.Pareschi, G.Russo, G.Toscani, Methode spectrale rapide pour l'equation de Fokker Planck Landau, C. R. Acad. Sci. Paris, t.330, Serie I, pp.517-522, (2000). 
  122. L.Pareschi, G.Russo, G.Toscani, Fast spectral methods for the Fokker-Planck-Landau collision operator, J. Comp. Phys. 165, pp. 216-236, (2000). 
  123. S.Jin, L.Pareschi, Discretization of the multiscale semiconductor Boltzmann equation by diffusive relaxation schemes, J. Comp. Phys. 161, pp.312-330, (2000).
  124. V.Comincioli, G.Naldi, L.Pareschi, G.Toscani, Numerical methods for multiscale hyperbolic systems and nonlinear parabolic equations, Proceedings Analisi Numerica metodi e software matematico, Annali Università di Ferrara, Sez.VII - Sc. Mat., Vol.XLV, (2000), 255-266. 
  125. L.Pareschi, G.Russo Implicit-Explicit Runge-Kutta schemes for stiff systems of differential equations, Recent Trends in Numerical Analysis, Edited by L.Brugnano and D.Trigiante, Vol. 3, 269-289, (2000).

    1991 - 1995
  126. E.Gabetta, L.Pareschi, Large-time behaviours of some fully discrete kinetic models in bounded domains. Le Matematiche, Vol.XLVI, Fasc. I (1991), pp.147-157.
  127. E.Gabetta, L.Pareschi, Stochastic aspects in nonlinear discrete kinetic theory, Proceedings of the IUTAM Symposium on Nonlinear Stochastic Mechanics, Turin, (1992), Springer-Verlag, Berlin, pp.237-245.
  128. E.Gabetta, L.Pareschi, Approximating the Broadwell model in a strip, Mathematical Models and Methods in Applied Sciences, Vol.2, No.1 (1992), pp.1-19.
  129. B.Bagni, D.Bollini, C.Leoni, C.Pallotti, L.Pareschi, P.Petazzoni, Computerized detection of clustered microcalcification: A modular approach using nonlinear filters, Physica Medica, Vol.IX, No.4, (1994).
  130. L.Pareschi, Kinetic approach to a diffusion problem, Proceedings of the National AIMETA symposium on Stocastic Mechanics, F. Casciati Ed., Taormina, (1994), pp.249-258.
  131. E.Gabetta, L.Pareschi, Nonlinear evolution of probability vectors of interest in discrete kinetic theory, Nonlinear Dynamics, Vol.5, No.3 (1994), pp.375-391.
  132. A.V.Bobylev, E.Gabetta, L.Pareschi, On stationary solutions to plane Broadwell model, Transport Theory and Statistical Physics, Vol.24, No.1-3, (1994), pp.289-305.
  133. A.V.Bobylev, E.Gabetta, L.Pareschi, On a boundary value problem for the plane Broadwell model. Exact solutions and numerical simulation, Mathematical Models and Methods in Applied Sciences, Vol.5, No.3, (1995), pp.253-266.
  134. E.Gabetta, L.Pareschi, The Maxwell gas and its Fourier transform towards a numerical approximation, Proceedings WASCOM 93, Series on Advances in Mathematics for Applied Sciences, Vol.23, (1995), pp.197-201.