*Monthly Notices of the Royal Astronomical Society*to appear. Preprint arXiv:2407.08519)

We present a finite-volume, genuinely 4th-order accurate numerical method for solving the equations of resistive relativistic magneto-hydrodynamics (Res-RMHD) in Cartesian coordinates. In our formulation, the magnetic field is evolved in time in terms of face-average values via the constrained-transport method while the remaining variables (density, momentum, energy and electric fields) are advanced as cell volume-averages. Spatial accuracy employs 5th-order accurate WENO-Z reconstruction from point values (as described in a companion paper) to obtain left and right states at zone interfaces. Explicit flux evaluation is carried out by solving a Riemann problem at cell interfaces, using the Maxwell-Harten-Lax-van Leer with contact wave resolution (MHLLC).