Friday, July 3, 2020

Uncertainty quantification of viscoelastic parameters in arterial hemodynamics with the a-FSI blood flow model




Giulia Bertaglia, Valerio Caleffi, Lorenzo Pareschi, Alessandro Valiani (J. Comp. Phys. 430: 110102, 2021, arXiv:2007.01907)

This work aims at identifying and quantifying uncertainties related to elastic and viscoelastic parameters, which characterize the arterial wall behavior, in one-dimensional modeling of the human arterial hemodynamics. The chosen uncertain parameters are modeled as random Gaussian-distributed variables, making stochastic the system of governing equations. The proposed methodology is initially discussed for a model equation, presenting a thorough convergence study which confirms the spectral accuracy of the stochastic collocation method and the second-order of accuracy of the IMEX finite volume scheme chosen to solve the mathematical model.
Then, univariate and multivariate uncertain quantification analyses are applied to the a-FSI blood flow model, concerning baseline and patient-specific single-artery test cases. A different sensitivity is depicted when comparing the variability of flow rate and velocity waveforms to the variability of pressure and area, the latter ones resulting much more sensitive to the parametric uncertainties underlying the mechanical characterization of vessel walls. Simulations performed considering both the simple elastic and the more realistic viscoelastic constitutive law show that including viscoelasticity in the FSI model consistently improves the reliability of pressure waveforms prediction. Results of the patient-specific tests suggest that the proposed methodology could be a valuable tool for improving cardiovascular diagnostics and the treatment of diseases.