Wednesday, June 11, 2025

Superlinear Drift in Consensus-Based Optimization with Condensation Phenomena

Jonathan Franceschi, Lorenzo Pareschi, Mattia Zanella (preprint arXiv:2506.09001)

Consensus-based optimization (CBO) is a class of metaheuristic algorithms designed for global optimization problems. In the many-particle limit, classical CBO dynamics can be rigorously connected to mean-field equations that ensure convergence toward global minimizers under suitable conditions. In this work, we draw inspiration from recent extensions of the Kaniadakis--Quarati model for indistinguishable bosons to develop a novel CBO method governed by a system of SDEs with superlinear drift and nonconstant diffusion. The resulting mean-field formulation in one dimension exhibits condensation-like phenomena, including finite-time blow-up and loss of L2-regularity.

To avoid the curse of dimensionality a marginal based formulation which permits to leverage the one-dimensional results to multiple dimensions is proposed. We support our approach with numerical experiments that highlight both its consistency and potential performance improvements compared to classical CBO methods.